2 research outputs found

    A Property Specification Pattern Catalog for Real-Time System Verification with UPPAAL

    Full text link
    Context: The goal of specification pattern catalogs for real-time requirements is to mask the complexity of specifying such requirements in a timed temporal logic for verification. For this purpose, they provide frontends to express and translate pattern-based natural language requirements to formulae in a suitable logic. However, the widely used real-time model checking tool UPPAAL only supports a restricted subset of those formulae that focus only on basic and non-nested reachability, safety, and liveness properties. This restriction renders many specification patterns inapplicable. As a workaround, timed observer automata need to be constructed manually to express sophisticated requirements envisioned by these patterns. Objective: In this work, we fill these gaps by providing a comprehensive specification pattern catalog for UPPAAL. The catalog supports qualitative and real-time requirements and covers all corresponding patterns of existing catalogs. Method: The catalog we propose is integrated with UPPAAL. It supports the specification of qualitative and real-time requirements using patterns and provides an automated generator that translates these requirements to observer automata and TCTL formulae. The resulting artifacts are used for verifying systems in UPPAAL. Thus, our catalog enables an automated end-to-end verification process for UPPAAL based on property specification patterns and observer automata. Results: We evaluate our catalog on three UPPAAL system models reported in the literature and mostly applied in an industrial setting. As a result, not only the reproducibility of the related UPPAAL models was possible, but also the validation of an automated, seamless, and accurate pattern- and observer-based verification process. Conclusion: The proposed property specification pattern catalog for UPPAAL enables practitioners to specify qualitative and real-time requirements...Comment: Accepted Manuscrip

    Runtime Verification of Self-Adaptive Systems with Changing Requirements

    Full text link
    To accurately make adaptation decisions, a self-adaptive system needs precise means to analyze itself at runtime. To this end, runtime verification can be used in the feedback loop to check that the managed system satisfies its requirements formalized as temporal-logic properties. These requirements, however, may change due to system evolution or uncertainty in the environment, managed system, and requirements themselves. Thus, the properties under investigation by the runtime verification have to be dynamically adapted to represent the changing requirements while preserving the knowledge about requirements satisfaction gathered thus far, all with minimal latency. To address this need, we present a runtime verification approach for self-adaptive systems with changing requirements. Our approach uses property specification patterns to automatically obtain automata with precise semantics that are the basis for runtime verification. The automata can be safely adapted during runtime verification while preserving intermediate verification results to seamlessly reflect requirement changes and enable continuous verification. We evaluate our approach on an Arduino prototype of the Body Sensor Network and the Timescales benchmark. Results show that our approach is over five times faster than the typical approach of redeploying and restarting runtime monitors to reflect requirements changes, while improving the system's trustworthiness by avoiding interruptions of verification.Comment: 18th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2023
    corecore